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In a continuum description of materials, the
stress tensor field,σ, quantifies the internal forces
the neighboring regions exert on a region of the
material. The classical theory of elastic solids as-
sumes that stress determines the strain, while hy-
drodynamics assumes that stress determines the
strain rate. To extend both successful theories to
more general materials, which display both elas-
tic and fluid properties, we introduce a descriptor
generalizing the classical strain to include plas-
tic deformations: the “statistical strain”, based on
averages on microscopic details. We apply such
a statistical analysis to a two-dimensional foam
steadily flowing through a constriction, a prob-
lem beyond reach of both theories, and prove that
the foam has the elastic properties of alinear and
isotropiccontinuous medium.

A “plastic” deformation means that micro-
scopic rearrangements take place in the material,
so that the microscopic pattern does not return to
its initial condition even after the applied force
has ended. An example is a two-dimensional
foam steadily flowing through a constriction (Fig.
1). This apparently simple example is utterly in-
tractable from the perspective of both elasticity
theory and Navier-Stokes treatments. Here we
present a new approach to analyze complex flows
of disordered materials.

The foam is prepared by blowing air into the
bottom of a column of soap solution. Bubbles
float to the top of the solution and enter a horizon-
tal channel. The channel is made of two parallel
Plexiglas plates 0.5 mm apart. A 5-mm wide con-
striction near the end of the channel disrupts the
otherwise homogeneous flow (Fig. 1).

To measure the Eulerian velocity field, we track
the center of mass of each bubble between two
successive images. The velocity field appears
smooth and regular, qualitatively indicating that
the foam behaves as a continuous medium. Stress
in the foam has dissipative and elastic compo-

nents; the pressure inside the bubbles and the
network of bubble edges contribute to the latter.
Since the pressure stress is isotropic, it does not
contribute to the elastic normal stress difference
σxx−σyy or shear stressσxy, which is thus entirely
due to the network structure. We measure locally
the network stress in each mesoscopic volumeV
centered around the point of measurement, of a
size that is larger than a bubble but much smaller
than the channel width. We proceed as follows: 1.
identify the bubble edges which cross the bound-
aries of the volume, 2. determine the tension of
each edge, 3. determine the average force~f on a
boundary elementd~Sby vectorially adding these
tensions and obtainσ. Fig. 2 clearly shows that
the stress field is heterogeneous, where the up-
stream influence of the constriction becomes vis-
ible asσxx−σyy changes sign.

Fig 1. Two-dimensional foam flowing through a
constriction. The 10 cm wide field of view shows
only the end of the 1 m long horizontal channel.

We list all vectors~̀ that link the two vertices
connected by one bubble edge, from which we
construct a tensor~̀⊗~̀ = (`i` j). This tensor av-
eraged over volumeV defines the localtexture
tensorM: Mi j = 〈`i` j〉V ,. This symmetric ten-
sor has two positive eigenvalues, the larger lies in
the direction of bubble elongation. It reflects at
large scales the relevant features of the actual mi-
crostructure of the material. For instance, Fig.3
shows an example ofM measured in the flowing
foam experiment, which quantifies the qualitative
impression of compression or elongation we ob-
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Fig 2. Snapshot of the foam with regions colored
according to the sign of the experimental value
of the normal elastic stress differenceσxx−σyy:
blue×, negative; black◦, zero within error; red
+, positive; green�, values we omit for analysis.

Fig 3. Experimental measurement ofM, super-
imposed on a snapshot of the foam (Fig. 1). We
displayM as an ellipse, the length of each axis
(in arbitrary units, the same scale for each el-
lipse) being proportional to an eigenvalue. We
omit data in boxes that touch the channel wall.

tain by looking at Fig. 1.
We define the “statistical strain tensor”:

U =
1
2

(
logM− logM0

)
.

Here the reference valueM0 is chosen in the
undeformed, isotropic foam far upstream of the
constriction (a choice that plays no role in the
elastic properties). The “statistical strain” ten-

sor reduces to the usual definition of strain in the
validity limits of classical elasticity. This ten-
sor is purely geometric, and does not explicitly
depend on stresses and forces. It applies to a
whole general class of materials with both elastic-
ity and plastic rearrangements, whenever we can
experimentally measure the relevant information:
whether in detail (list of microscopic positions
and links) or as mesoscopic averages. It is a state
variable, constant in a steady flow but not neces-
sarily homogeneous, allowing a thermodynamic
description of non-equilibrium complex fluids.

How do the elastic stress and the statisti-
cal strain relate? We plot the normal stress
differenceσxx−σyy versusUxx−Uyy. Each data
point is a measurement derived from averages at
one position of the foam. All data points fall on
a narrow straight line. SinceM, and henceU , is
completely independent ofσ, the high correlation
between them reflects the physical constitutive re-
lation required to treat the foam as a continuous
medium, in which details of the microstructure
appear only through mesoscopic averages. Since
different applied strainsuappl can correspond to
the sameσ, such relation does not appear in clas-
sicalσ vs. uappl plots. Moreover, the relation be-

tweenU andσ is linear over the whole range cov-
ered by our experiment, the slope of which mea-
sures the shear modulus of the foam, which is
much beyond the validity regime of classical elas-
ticity. The foam is also nearly isotropic, since we
find almost the same value for thexycomponent.

In summary, we have measured the stress, the
texture tensor and the statistical strain for a 2D
flowing foam. We have shown that the 2D foam
behaves like a linear and isotropic continuous ma-
terial.
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